
Decrypting ERC4337: Technical 
Architecture and Transactions

Albert Lin

1



Who am I

● Albert Lin
● Furucombo Solidity Engineer
● Started participating in the 

cryptocurrency realm since 2018.

2

https://furucombo.app/


Agenda

● Introduce ERC4337
● ERC4337 Architecture and Flow
● Decode EntryPoint and UserOperation
● Aggregate Signatures
● Takeaways

3



Introduce ERC4337

4



● EOA (Externally Owned Account) is the default wallet for interacting with 
Ethereum, but it has several limitations, making it difficult to onboard more 
users. For example

○ Losing private keys or getting hacked means losing all assets.
○ External owned accounts lack flexibility in defining functions and logic.
○ Only Ether can be used for transaction fees.
○ Native multi-signature wallets require smart contract implementation.

● Another solution to these issues is the Smart Contract Account, which can 
pre-define logic within a contract

● Challenges for Smart Contract Accounts: Non-standardized norms and lack 
of anti-censorship features.

What is Account Abstraction

5



What is Account Abstraction

● Abstraction simplifies complex details for easier understanding and 
problem-solving.

● Account Abstraction means abstracting certain consensus layer behaviors 
for handling at the application layer. For example, 

○ Signature verification abstraction
○ Fee charging abstraction

● There are various ways to implement Account Abstraction. For example
○ EIP-2938: Introduce EVM instructions PAYGAS (0x49) 
○ EIP-3074: A consensus layer proposal and user still need EOA with funds. Introduce EVM 

instructions AUTH (0xf6) and AUTHCALL(0xf7)

6



What is ERC4337

● ERC-4337: Account Abstraction Using Alt Mempool, proposed by Vitalik on 
2021/9/29

● An account abstraction proposal which completely avoids consensus-layer 
protocol changes, instead relying on higher-layer infrastructure.

● Account Abstraction via Entry Point Contract specification

7

https://eips.ethereum.org/EIPS/eip-4337


ERC4337 Architecture and Flow

8



Ethereum Tx Flow

Reference source: https://youtu.be/B6sN8EXszP8 9

https://youtu.be/B6sN8EXszP8


ERC4337 Tx Flow

Reference source: https://youtu.be/B6sN8EXszP8 10

https://youtu.be/B6sN8EXszP8


● Transform user-requested transaction 
data into the userOp data structure.

● userOp comprises interaction address 
and required calldata, akin to 
EOA-generated transaction content.

● Besides transaction data, userOp 
contains extra information for execution 
verification.

ERC4337 Tx Flow - Create userOp

Reference source: https://youtu.be/B6sN8EXszP8 11

https://youtu.be/B6sN8EXszP8


● Instead of utilizing the public mempool, 
userOps are directed to a specialized 
"higher-level" mempool designed 
exclusively for UserOperations. 

● This enhancement is currently in the 
process of being developed for P2P 
networking.

ERC4337 Tx Flow - Alt Mempool

Reference source: https://youtu.be/B6sN8EXszP8 12

https://youtu.be/B6sN8EXszP8


● Bundlers choose userOps from the alt 
mempool for their bundle transaction to 
Ethereum's EntryPoint contract.

● Bundlers handle gas costs for all 
UserOperations.

● The inclusion, exclusion, and ordering 
process leads to MEV emergence.

ERC4337 Tx Flow - Bundler

Reference source: https://youtu.be/B6sN8EXszP8 13

https://youtu.be/B6sN8EXszP8


ERC4337 Tx Flow - Paymaster

● An optional third-party contract account responsible for paying gas fees.
● Enable programmable subsidization of userOp gas fees, such as 

○ Utilizing ERC20 tokens
○ Applying special conditions like the first 100 intents or
○ Specific NFTs in the wallet, and more.

Reference source: https://youtu.be/B6sN8EXszP8

14

https://youtu.be/B6sN8EXszP8


ERC4337 Flow Components Recap

● UserOp: A new off-chain transaction format initiated by users, distinct from 
traditional transactions.

● Alt Mempool: A dedicated mempool for accumulating pending userOps to be 
executed, separate from the transaction mempool.

● Bundler: Responsible for bundling user operations and delivering them to the 
EntryPoint Contract.

● Paymaster: An optional third-party contract account responsible for paying 
gas fees

15



Decode EntryPoint and UserOperation

16



ERC4337 Tx Flow

Reference source: https://youtu.be/B6sN8EXszP8 17

https://youtu.be/B6sN8EXszP8


UserOperation Data Structure

18



User Operation Column Explanation

sender Smart Contract Wallet address

nonce Nonce value verified in EntryPoint to avoid replay attacks. SCW is not expected to 
implement this replay prevention mechanism.

initCode Bytes containing calldata for SCW Factory contract. First 20 bytes are Factory 
contract address and rest is calldata of function to be called on Factory Contract.

callData

Calldata of function to be executed on SCW. It can be any function on SCW (e.g., 
execute or executeBatch) which usually then further calls a dApp smart contract. It 
can even call other methods of SCW internally as well. It's up to you how you 
implement this method in SCW.

callGasLimit Gas limit used while calling the SCW method from EntryPoint contract using 
callData above.

Source:Decoding EntryPoint and UserOperation with ERC-4337 Part 1 19

https://www.biconomy.io/post/decoding-entrypoint-and-useroperation-with-erc-4337-part1


verificationGasLimit

This value is used for multiple purposes. 
1. It is used as gas limit while calling SCW Factory contract, 
2. calling verification methods on SCW and Paymaster and 
3. calling postOp method on Paymaster. 

In short, this is gas limit used in calling verification methods on SCW and 
Paymaster along with postOp method on Paymaster. To be more precise, on top 
of it, there are other lines in EP whose gas used is accounted in 
verificationGasLimit.

preVerificationGas
This field is also critical to understand properly. In short, bundler can make profit 
using this field, if used properly. This is the gas counted on EP as a part of 
transaction execution which can’t be tracked on chain using gasleft() opcode.

maxFeePerGas
This is the max fee per unit of gas that UserOp is willing to pay. It is similar to how 
maxFeePerGas is defined in EIP-1559 for gas calculation of Ethereum 
transaction.

User Operation Column Explanation

Source:Decoding EntryPoint and UserOperation with ERC-4337 Part 1 20

https://www.biconomy.io/post/decoding-entrypoint-and-useroperation-with-erc-4337-part1


maxPriorityFeePerGas
This is max priority fee per gas that UserOp is willing to pay. It is similar to how 
maxPriorityFeePerGas is defined in EIP-1559 for gas calculation of Ethereum 
transaction.

paymasterAndData

It contains bytes representing paymaster related information given by UserOp for 
verification. First 20 bytes is paymaster address and rest represents data to be 
used by Paymaster for verification. It is empty if paymaster is not used to sponsor 
the transaction for given UserOp.

signature
It represents the data to be passed to SCW for verification purpose. Usually it’s 
the signature of userOpHash signed by the owner of SCW but it can be utilised in 
other ways also.

User Operation Column Explanation

Source:Decoding EntryPoint and UserOperation with ERC-4337 Part 1 21

https://www.biconomy.io/post/decoding-entrypoint-and-useroperation-with-erc-4337-part1


Deposit Ether to EntryPoint

● Deposit Ether into EntryPoint before executing userOp as gas fee for the 
bundler.

● EntryPoint maintains a 'deposits' map to record relevant information related to 
these deposits.

22



● GitHub: eth-infinitism/account-abstraction
● EntryPoint allows two ways to execute 

userOps: 
○ handleOps() 
○ handleAggregatedOps(). 

● We'll explain userOps in EntryPoint using 
handleOps() for simplicity.

● handleOps() breaks down into four steps:
○ Validate prepayment 
○ Validate validation data
○ Execute Op 
○ Compensate

Decode handleOps()

23

https://github.com/eth-infinitism/account-abstraction/blob/v0.6.0/contracts/core/EntryPoint.sol


Decode handleOps()

24



Decode EntryPoint - Validate Prepayment

1. getUserOpHash() contains information 
about the userOP (excluding the 
signature), the EntryPoint address, and 
the chainId.

2. Calculate a maximum gas fee based on 
specific formulas:

a. For SWC: callGasLimit + 
verificationGasLimit + preVerificationGas

b. For Paymaster: callGasLimit + 
verificationGasLimit * 3 + 
preVerificationGas

3. If initCode isn't empty, we create a wallet 
contract using factory address and 
calldata.

25



4. Use validateUserOp() in the wallet to 
authorize the userOp and obtain 
validationData.

a. Deposit ether into EntryPoint if deposited 
fund is insufficient

5. Update the wallet's nonce in the 
EntryPoint for security against replay 
attacks

a. nonce consists of a 192-bit key(left) and a 
64-bit sequence number(right).

6. If paymasterAndData contains data, verify 
paymaster's sufficient funds for the gas fee 
and request fee coverage using 
validatePaymasterUserOp(). Return 
paymasterValidationData.

Decode EntryPoint - Validate Prepayment

26



● This step checks if there's a timeout in the 
data returned by the wallet's 
validateUserOp() and the paymaster's 
validatePaymasterUserOp().

● Both validationData and 
paymasterValidationData are of the uint256 
data type. The EntryPoint splits these uint256 
values into three parts:

○ authorizer
■ 0 for valid signature
■ 1 to mark signature failure.
■ an address of an `authorizer` contract.

○ validUntil
○ validAfter

● The action can only be executed when 
validAfter ≤ block.timestamp ≤ validUntil.

Decode EntryPoint - Validate validation data

27



1. We perform predefined wallet operations 
(e.g., token swaps) using Exec.call. 

2. _handlePostOp
○ If there's a paymaster, after the Exec.call, 

inform the paymaster that the operation is 
done by calling paymaster.postOp(). This 
notification includes whether the

■ execution succeeded, 
■ the actualGasCost, and 
■ data specified by the paymaster.

○ Also give back any unused gas to the 
wallet or paymaster's deposit using 
_incrementDeposit.

Decode EntryPoint - Execute Op

28



Decode EntryPoint - Compensate

● Send ether to the Bundler as 
compensation.

● Not only Bundler, but you can also specify 
any address to receive the ether.

29



Decode EntryPoint - handleOps

30



Aggregate Signatures

31



Aggregate Signatures

● Aggregated signatures enhance 
transaction processing efficiency and 
scalability.

● Aggregator is a helper contract trusted by 
accounts to validate an aggregated 
signature

● handleAggregatedOps() is called to 
execute userOps involving aggregated 
signatures.

● The ETH Infinitism team has implemented 
signature aggregation using BLS 
(Boneh–Lynn–Shacham) signatures in the 
example.

32

https://github.com/eth-infinitism/account-abstraction/tree/develop/contracts/samples/bls


Aggregate Signatures

Wallet Signature Aggregate Signature

33



Takeaways

● ERC4337 provides a method for achieving Account Abstraction without 
requiring modifications to the consensus layer. This is achieved through the 
utilization of the userOp mempool and EntryPoint mechanisms.

● Users have the ability to substitute Ethereum transactions with userOp to 
convey their desired actions for execution.

● The userOp mempool also introduces fresh possibilities for MEV 
● The Bundler is responsible for the aggregation of user operations and their 

delivery to the Entry Point Contract.
● The Paymaster serves as an optional third-party contract account tasked with 

covering gas fees.
● The utilization of Aggregate Signatures enhances transaction processing 

efficiency and scalability.

34



Reference

● Account Abstraction is NOT coming
● 從抽象帳戶到 ERC4337
● Account Abstraction 介紹（一）：以太坊的帳戶現況

● ERC-4337: Exploring the Technical Components of Account Abstraction — Part 2
● Decoding EntryPoint and UserOperation with ERC-4337 Part 1
● Decoding EntryPoint and UserOperations with ERC-4337 Part 2
● Account Abstraction Part 4: Aggregate Signatures
● Account Abstraction Part 2: Sponsoring Transactions Using Paymasters
● Efficient and Secure Digital Signatures for Proof-of-Stake Blockchains
● ERC 4337 | Account Abstraction 中文詳解

● 從抽象帳戶到 ERC4337
● https://eips.ethereum.org/EIPS/eip-4337

35

https://safe.mirror.xyz/9KmZjEbFkmI79s28d9xar6JWYrE50F5AHpa5CR12YGI?source=post_page-----1b10d417b8d5--------------------------------
https://medium.com/taipei-ethereum-meetup/account-abstraction-%E6%8A%BD%E8%B1%A1%E5%B8%B3%E6%88%B6-eip-3074-%E8%88%87-eip-4337-%E7%B0%A1%E4%BB%8B-cb4e1f3f6864
https://medium.com/imtoken/account-abstraction-%E4%BB%8B%E7%B4%B9-%E4%B8%80-%E4%BB%A5%E5%A4%AA%E5%9D%8A%E7%9A%84%E5%B8%B3%E6%88%B6%E7%8F%BE%E6%B3%81-6c03c303f229
https://medium.com/edennetwork/erc-4337-exploring-the-technical-components-of-account-abstraction-part-2-fec300a7f052
https://www.biconomy.io/post/decoding-entrypoint-and-useroperation-with-erc-4337-part1
https://www.biconomy.io/post/decoding-entrypoint-and-useroperation-with-erc-4337-part2
https://alchemy.com/blog/account-abstraction-aggregate-signatures
https://www.alchemy.com/blog/account-abstraction-paymasters
https://algorandtechnologies.com/news/digital-signatures-for-blockchains
https://medium.com/@alan890104/erc-4337-account-abstraction-37535ff5fe24
https://medium.com/taipei-ethereum-meetup/%E5%BE%9E%E6%8A%BD%E8%B1%A1%E5%B8%B3%E6%88%B6%E5%88%B0erc4337-1b10d417b8d5
https://eips.ethereum.org/EIPS/eip-4337

